3,549 research outputs found

    An overview of data acquisition, signal coding and data analysis techniques for MST radars

    Get PDF
    An overview is given of the data acquisition, signal processing, and data analysis techniques that are currently in use with high power MST/ST (mesosphere stratosphere troposphere/stratosphere troposphere) radars. This review supplements the works of Rastogi (1983) and Farley (1984) presented at previous MAP workshops. A general description is given of data acquisition and signal processing operations and they are characterized on the basis of their disparate time scales. Then signal coding, a brief description of frequently used codes, and their limitations are discussed, and finally, several aspects of statistical data processing such as signal statistics, power spectrum and autocovariance analysis, outlier removal techniques are discussed

    Parametrization of Fresnel returns in middle-atmosphere radar experiments

    Get PDF
    Weak reflections from sharp discontinuities in radio refractivity are usually invoked to explain the results of radio propagation experiments. The characteristics of refractivity structures required to produce Fresnel returns are examined and experimental evidence for Fresnel returns in middle-atmosphere radar experiments is reviewed. The consequences of these returns on estimating the turbulence and wind parameters are outlined

    Data processing techniques used with MST radars: A review

    Get PDF
    The data processing methods used in high power radar probing of the middle atmosphere are examined. The radar acts as a spatial filter on the small scale refractivity fluctuations in the medium. The characteristics of the received signals are related to the statistical properties of these fluctuations. A functional outline of the components of a radar system is given. Most computation intensive tasks are carried out by the processor. The processor computes a statistical function of the received signals, simultaneously for a large number of ranges. The slow fading of atmospheric signals is used to reduce the data input rate to the processor by coherent integration. The inherent range resolution of the radar experiments can be improved significant with the use of pseudonoise phase codes to modulate the transmitted pulses and a corresponding decoding operation on the received signals. Commutability of the decoding and coherent integration operations is used to obtain a significant reduction in computations. The limitations of the processors are outlined. At the next level of data reduction, the measured function is parameterized by a few spectral moments that can be related to physical processes in the medium. The problems encountered in estimating the spectral moments in the presence of strong ground clutter, external interference, and noise are discussed. The graphical and statistical analysis of the inferred parameters are outlined. The requirements for special purpose processors for MST radars are discussed

    Spectral characteristics of the MST radar returns

    Get PDF
    The salient features of the spectra of atmospheric returns due to random refractivity fluctuations in the Mesosphere, Stratosphere, Troposphere MST region are reviewed. The nonhomogeneous layered structure of turbulence is often evident as multiple peaks in the spectra. The time evolution of the spectra observed with a fine Doppler resolution provides evidence for thin regions of turbulence associated with gravity waves and shear instabilities. Embedded in these regions are horizontally extended refractivity structures that produce enhanced returns due to specular reflections. It is conceivable that some enhanced returns arise due to anisotropy of small scale refractivity structures. Observed correlations of the strength of the returns with their Doppler spread, wind shears, and winds provide insights into the physical mechanisms that produce turbulence

    A note on the use of coherent integration in periodogram analysis of MST radar signals

    Get PDF
    The effect of coherent integration on the periodogram method to estimate the power spectra of MST radar signals is examined. The spectrum estimate usually is biased, even when care is taken to reduce the aliasing effects. Due to this bias, the signal power for Doppler shifted signals is underestimated by as much as 4 dB. The use of coherent integration in reducing the effect of aliased power line harmonics is pointed out

    Criteria and algorithms for spectrum parameterization of MST radar signals

    Get PDF
    The power spectra S(f) of MST radar signals contain useful information about the variance of refractivity fluctuations, the mean radial velocity, and the radial velocity variance in the atmosphere. When noise and other contaminating signals are absent, these quantities can be obtained directly from the zeroth, first and second order moments of the spectra. A step-by-step procedure is outlined that can be used effectively to reduce large amounts of MST radar data-averaged periodograms measured in range and time to a parameterized form. The parameters to which a periodogram can be reduced are outlined and the steps in the procedure, that may be followed selectively, to arrive at the final set of reduced parameters are given. Examples of the performance of the procedure are given and its use with other radars are commented on

    Determination of billows and other turbulent structures, part 4.1A

    Get PDF
    Billows are regular, wave-like arrays of cross-flow vortices that develop in stratified oceanic or atmospheric flows with large shear. Atmospheric billows can become manifest through condensation. Billows are frequently seen in their characteristic cloud forms in the lower atmosphere. Under suitable viewing conditions, billows can also be seen in noctilucent clouds that form near the polar mesosphere during the summer months. Other turbulent structures -- related to billows -- are the Kelvin-Helmholtz instability (KHI) and cat's eye structures that occur in fully developed turbulent shear flows. Shear flows may contain perturbations at many different horizontal wavelengths and vertical scales. Realistic theoretical models have been constructed to study the stability and growth of these perturbations. The extent to which billows and Kelvin-Helmholtz instability have been observed in the atmosphere with the use of radars is outlined. Most of these observations are confined to the troposphere. Suggestions are made for improved radar experiments that are required to detect these structures at higher altitudes

    Usefulness of multifrequency MST radar measurements, part 2.6B

    Get PDF
    Scattering of radio waves from atmospheric refractive-index irregularities induced by turbulence was invoked almost four decades ago to explain the characteristics of signals received on VHF/UHF ionospheric and tropospheric forward-scatter links. Due to the bistatic geometry of these links a slender, horizontally extended, common volume or cell is formed in space. The principal contribution to scattering arises from refractive-index fluctuations in this volume at the Bragg wave number K approx. sub B = K approx. sub i -k approx. sub s vectors. It has been surmised that the use of more than one frequency in probing the middle-atmosphere regions should help resolve several issues pertaining to the scattering mechanism. These issues are briefly re-examined in this note. The implications of the radar equation are discussed. The problems arising due to layered structure of turbulence and the choice of frequencies most suitable for multifrequency measurements are considered

    Interference detection and correction applied to incoherent-scatter radar power spectrum measurement

    Get PDF
    A median filter based interference detection and correction technique is evaluated and the method applied to the Arecibo incoherent scatter radar D-region ionospheric power spectrum is discussed. The method can be extended to other kinds of data when the statistics involved in the process are still valid

    Simultaneous VHF and UHF radar observation of the mesosphere at Arecibo during a solar flare: A check on the gradient-mixing hypothesis

    Get PDF
    The results of a two wavelength (VHF and UHF) mesosphere experiment performed at the Arecibo Observatory on January 5, 1981 are discussed. The 46.8-MHz VHF radar (3.21 m Bragg scale) was operated to provide spectral measurements of signals scattered from refractivity fluctuations due to turbulence. Other physical parameters such as radial velocities, scattered signal power, and Doppler spread due to turbulence can be derived from signal spectra. The 430-MHz UHF radar (0.36 m Bragg scale) was used for D-region electron-density measurements using the incoherent scatter technique with a comparable height resolution. The radars were pointed symmetrically about the vertical with a beam spacing of 5.5 degree in the meridional plane. Occurrence of a type 4 solar flare during the experiment produced enhanced D-region electron-density gradients. This was a unique circumstance that provided the possibility of testing the basic premises of the turbulent gradient-mixing hypothesis
    corecore